Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Maternal mortality due to cardiovascular disease is a rising concern in the U.S. Pregnancy triggers changes in the circulatory system, potentially influencing the structure of the central vasculature. Evidence suggests a link between a woman's pregnancy history and future cardiovascular health, but our understanding remains limited. To fill this gap, we examined the passive mechanics of the murine ascending thoracic aorta during late gestation. By performing biaxial mechanical testing on the ascending aorta, we were able to characterize the mechanical properties of both control and late-gestation tissues. By examining mechanical, structural, and geometric properties, we confirmed that remodeling of the aortic wall occurred. Morphological and mechanical properties of the tissue indicated an outward expansion of the tissue, as reflected in changes in wall thickness (∼12% increase) and luminal diameter (∼6% increase) at its physiologically loaded state in the pregnant group. With these geometric adaptations and despite increased hemodynamic loads, pregnancy did not induce significant changes in the tensile wall stress at the similar physiological pressure levels of the pregnant and control tissues. The alterations also included reduced intrinsic stiffness in the circumferential direction (∼18%) and reduced structural stiffness (∼26%) in the pregnant group. The observed vascular remodeling maintained the elastic stored energy of the aortic wall under systolic loads, indicating preservation of vascular function. Data from our study of pregnancy-related vascular remodeling will provide valuable insights for future investigations of maternal cardiovascular health.more » « less
-
The role of elastin on the mechanical properties of the anterior leaflet in porcine tricuspid valvesJiang, Yi (Ed.)Elastin is present in the extracellular matrix (ECM) of connective tissues, and its mechanical properties are well documented. In Marfan syndrome, however, the inability to properly code for the protein fibrillin-1 prematurely leads to the degradation and loss of elastin fiber integrity in the ECM. In this study, the role of elastin in the ECM of the anterior leaflet of the tricuspid valve was investigated by examining the biomechanical behavior of porcine leaflets before and after the application of the enzyme elastase. Five loading protocols were applied to the leaflet specimens in two groups (elastase-treated and control samples). The mechanical response following elastase application yielded a significantly stiffer material in both the radial and circumferential directions. At a physiological level of stress (85 kPa), the elastase group had an average strain of 26.21% and 6.32% in the radial and circumferential directions, respectively, at baseline prior to elastase application. Following elastase treatment, the average strain was 5.28% and 0.97% in the radial and circumferential directions, respectively. No statistically significant change was found in the control group following sham treatment with phosphate-buffered saline (PBS). Two-photon microscopy images confirmed that after the removal of elastin, the collagen fibers displayed a loss of undulation. With a significant reduction in radial compliance, the ability to withstand physiological loads may be compromised. As such, an extracellular matrix that is structurally deficient in elastin may hinder normal tricuspid valve function.more » « less
-
null (Ed.)Abstract Computational modeling of cardiovascular flows is becoming increasingly important in a range of biomedical applications, and understanding the fundamentals of computational modeling is important for engineering students. In addition to their purpose as research tools, integrated image-based computational fluid dynamics (CFD) platforms can be used to teach the fundamental principles involved in computational modeling and generate interest in studying cardiovascular disease. We report the results of a study performed at five institutions designed to investigate the effectiveness of an integrated modeling platform as an instructional tool and describe “best practices” for using an integrated modeling platform in the classroom. Use of an integrated modeling platform as an instructional tool in nontraditional educational settings (workshops, study abroad programs, in outreach) is also discussed. Results of the study show statistically significant improvements in understanding after using the integrated modeling platform, suggesting such platforms can be effective tools for teaching fundamental cardiovascular computational modeling principles.more » « less
An official website of the United States government
